.MCAD 304020000 1 85 1843 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 0.750000 0.750000 0.750000 0.500000 1 .CMD HEADER_FOOTER 1 1 *empty* Paris^Island^Boilers *empty* 0 1 |F |P |D^|T .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .INC 1 31 1636 0 0 http://www.3-cities.com/~tyroneb/mathcad/units.mcd .ATT .LINK http://www.3-cities.com/~tyroneb/mathcad/units.mcd .ATT_END .TXT 2 -30 1542 0 0 Cg a73.000000,73.000000,35 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Additional MathCad Unit Definitions} .TXT 5 0 1210 0 0 Cg a77.000000,77.000000,72 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Saturated Liquid and Saturated Vapor Enthalpies as Functions of Pressure}} .TXT 3 0 1211 0 0 Cg a78.000000,78.000000,413 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 The specific enthalpy of saturated liquid, h}{\cf2\dn f}{\cf2 , or saturated vapor, h}{\cf2\dn g}{\cf2 , may be expressed solely as a function of pressure, p. This relationship may be adequately approximated throughout the range of pressure from 0.1 psia to the critical pressure (p}{\cf2\dn crit}{\cf2 ) by the following functions. The constant coefficients, CFn}{\cf2\dn i}{\cf2 and CGn}{\cf2\dn i}{ \cf2 , are listed at the end of this document. The resulting enthalpy is in units of BTU/lbm.}} .TXT 11 0 1212 0 0 Cg a77.000000,77.000000,21 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Saturated Liquid (h}{\cf2\dn f}{\cf2 )}} .EQN 4 1 382 0 0 {0:h.f}NAME({0:p}NAME):(((((({0:x}NAME){72}(({0:p}NAME)/({0:psi}NAME))){71}(({0:x.c}NAME){72}(({0:p.crit}NAME)/({0:psi}NAME)))){71}((({0:Para}NAME){72}(((0,8,{0:i}NAME,({0:CF1}NAME)[({0:i}NAME)*({0:ln}NAME({0:x}NAME))^({0:i}NAME)){64}))){73}(0.1* {0:psi}NAMEó{0:p}NAMEó950*{0:psi}NAME))){71}((({0:Para}NAME){72}(((0,8,{0:i}NAME,({0:CF2}NAME)[({0:i}NAME)*({0:ln}NAME({0:x}NAME))^({0:i}NAME)){64}))){73}(950*{0:psi}NAME<{0:p}NAMEó2550*{0:psi}NAME))){71}((({0:Para}NAME){72}(((0,8,{0:i}NAME,( {0:CF3}NAME)[({0:i}NAME)*(((({0:x.c}NAME-{0:x}NAME))^(.41)))^({0:i}NAME)){64}))){73}(2550*{0:psi}NAME<{0:p}NAMEó{0:p.crit}NAME))){71}({0:Para}NAME*({0:BTU}NAME)/({0:lb}NAME)) .TXT 42 0 389 0 0 Cg a77.000000,77.000000,20 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Saturated Vapor (h}{\cf2\dn g}{\cf2 )}} .EQN 4 0 383 0 0 {0:h.g}NAME({0:p}NAME):(((((({0:x}NAME){72}(({0:p}NAME)/({0:psi}NAME))){71}(({0:x.c}NAME){72}(({0:p.crit}NAME)/({0:psi}NAME)))){71}((({0:Para}NAME){72}(((0,11,{0:i}NAME,({0:CG1}NAME)[({0:i}NAME)*({0:ln}NAME({0:x}NAME))^({0:i}NAME)){64}))){73}(0.1* {0:psi}NAMEó{0:p}NAMEó950*{0:psi}NAME))){71}((({0:Para}NAME){72}(((0,8,{0:i}NAME,({0:CG2}NAME)[({0:i}NAME)*({0:ln}NAME({0:x}NAME))^({0:i}NAME)){64}))){73}(950*{0:psi}NAME<{0:p}NAMEó2650*{0:psi}NAME))){71}((({0:Para}NAME){72}(((0,6,{0:i}NAME,( {0:CG3}NAME)[({0:i}NAME)*(((({0:x.c}NAME-{0:x}NAME))^(.41)))^({0:i}NAME)){64}))){73}(2650*{0:psi}NAME<{0:p}NAMEó{0:p.crit}NAME))){71}({0:Para}NAME*({0:BTU}NAME)/({0:lb}NAME)) .TXT 40 -1 390 0 0 C x1,1,0,0 .TXT 3 0 392 0 0 Cg a78.000000,78.000000,49 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Temperature as Functions of Enthalpy and Pressure}} .TXT 3 0 1215 0 0 Cg a87.000000,87.000000,289 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 The temperature of water is approximated by the following function of pressure and enthalpy. The constant coefficients CTn}{\cf2\dn i,j}{ \cf2 are listed at the end of this document. The resulting temperature is in units of degree Rankine. The subdomain division boundary values are p}{\cf2\dn crit}{\cf2 and h(p}{\cf2\dn crit}{\cf2 ). }} .EQN 13 0 391 0 0 {0:T}NAME({0:p}NAME,{0:h}NAME):(((((((((((({0:p.x}NAME){72}(({0:p}NAME)/({0:psi}NAME))){71}(({0:h.x}NAME){72}(({0:h}NAME)/((({0:BTU}NAME)/({0:lb}NAME)))))){71}(({0:p_h.f}NAME){72}({0:h.f}NAME({0:p}NAME)))){71}(({0:p_h.g}NAME){72}({0:h.g}NAME( {0:p}NAME)))){71}(({0:pc_h.f}NAME){72}({0:h.f}NAME({0:p.crit}NAME)))){71}(({0:pc_h.g}NAME){72}({0:h.g}NAME({0:p.crit}NAME)))){71}(((({0:Para}NAME){72}(((0,1,{0:i}NAME,((0,3,{0:j}NAME,({0:CT1}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*( {0:h.x}NAME)^({0:j}NAME)){64})){64})))){73}(({0:p}NAME<{0:p.crit}NAME)*({0:h}NAMEó{0:p_h.f}NAME)))){71}(((({0:Para}NAME){72}(((0,4,{0:i}NAME,((0,4,{0:j}NAME,({0:CT2}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*({0:h.x}NAME)^({0:j}NAME)){64} )){64})))){73}(({0:p}NAMEò{0:p.crit}NAME)*({0:h}NAMEó{0:pc_h.f}NAME)))){71}(((({0:Para}NAME){72}(((0,4,{0:i}NAME,((0,4,{0:j}NAME,({0:CT3}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*({0:h.x}NAME)^({0:j}NAME)){64})){64})))){73}(({0:p}NAME< {0:p.crit}NAME)*({0:h}NAMEò{0:p_h.g}NAME)))){71}(((({0:Para}NAME){72}(((0,4,{0:i}NAME,((0,4,{0:j}NAME,({0:CT4}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*({0:h.x}NAME)^({0:j}NAME)){64})){64})))){73}(({0:p}NAMEò{0:p.crit}NAME)*({0:h}NAME> {0:pc_h.g}NAME)))){71}(((({0:Para}NAME){72}(((0,1,{0:i}NAME,((0,3,{0:j}NAME,({0:CT1}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*((({0:h.f}NAME({0:p}NAME))/((({0:BTU}NAME)/({0:lb}NAME)))))^({0:j}NAME)){64})){64})))){73}((0.1*{0:psi}NAMEó {0:p}NAME<{0:p.crit}NAME)*({0:p_h.f}NAME<{0:h}NAME<{0:p_h.g}NAME)))){71}({0:FtoR}NAME({0:Para}NAME)) .TXT 73 0 233 0 0 C x1,1,0,0 .TXT 3 0 409 0 0 Cg a74.000000,74.000000,54 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Specific Volume as a Function of Pressure and Enthalpy}} .TXT 4 0 1217 0 0 Cg a86.000000,86.000000,326 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 The specific volume, v, of water is approximated by the following function of pressure and enthalpy. The constant coefficients, CNn}{\cf2\dn i,j}{ \cf2 , are listed at the end of this document. The resulting specific volume, v, is in units of ft}{\cf2\up 3}{\cf2 /lbm. The critical pressure is pcrit and the saturation enthalpy boundary functions, h}{ \cf2\dn f}{\cf2 and h}{\cf2\dn g}{\cf2 .}} .EQN 12 0 418 0 0 {0:v}NAME({0:p}NAME,{0:h}NAME):((((((({0:x.t}NAME){72}(({0:h}NAME-{0:h.f}NAME({0:p}NAME))/({0:h.g}NAME({0:p}NAME)-{0:h.f}NAME({0:p}NAME)))){71}(({0:p.x}NAME){72}(({0:p}NAME)/({0:psi}NAME)))){71}(({0:h.x}NAME){72}(({0:h}NAME)/((({0:BTU}NAME)/( {0:lb}NAME)))))){71}(({0:N.l}NAME){72}(({0:e}NAME)^(((0,2,{0:i}NAME,((0,4,{0:j}NAME,({0:CN1}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^({0:i}NAME)*({0:h.x}NAME)^({0:j}NAME)){64})){64}))))){71}(({0:N.g}NAME){72}(((0,3,{0:i}NAME,((0,2,{0:j}NAME,( {0:CN2}NAME)[({0:i}NAME,{0:j}NAME)*({0:p.x}NAME)^(({0:i}NAME-1))*((({0:h.g}NAME({0:p}NAME))/((({0:BTU}NAME)/({0:lb}NAME)))))^({0:j}NAME)){64})){64})))){71}(((({0:Para}NAME){72}(({0:N.l}NAME+{0:x.t}NAME*({0:N.g}NAME-{0:N.l}NAME))))){73}({0:x.t}NAMEò0) )){71}(({0:Para}NAME){72}({0:Para}NAME*(({0:ft}NAME)^(3))/({0:lb}NAME))) .TXT 46 0 320 0 0 C x1,1,0,0 .TXT 4 0 1218 0 0 Cg a77.000000,77.000000,61 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Thermal Conductivity as a Function of Temperature and Density}} .TXT 3 0 1220 0 0 Cg a87.000000,87.000000,256 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 The thermal conductivity of water, k, may be correlated to its temperature and density. The correlation used was formulated under the auspices of the International Association for the Properties of Steam. The correlation is described in SI units (W/k m):}} .EQN 11 3 437 0 0 {0:\l.o}NAME({0:T}NAME):\(({0:T}NAME)/({0:T'}NAME))*((0,3,{0:i}NAME,({0:a}NAME)[({0:i}NAME)*((({0:T}NAME)/({0:T'}NAME)))^({0:i}NAME)){64}) .EQN 10 0 987 0 0 {0:\l'}NAME({0:\r}NAME):({0:b}NAME)[(0)+({0:b}NAME)[(1)*({0:\r}NAME)/({0:\r'}NAME)+({0:b}NAME)[(2)*({0:e}NAME)^((({0:B}NAME)[(1)*((({0:\r}NAME)/({0:\r'}NAME)+({0:B}NAME)[(2)))^(2))) .EQN 6 0 988 0 0 {0:\DT'}NAME({0:T}NAME):|(({0:T}NAME)/({0:T'}NAME)-1.0)+({0:C}NAME)[(4) .EQN 5 0 989 0 0 {0:Q}NAME({0:T}NAME):2.0+({0:C}NAME)[(5)*(({0:\DT'}NAME({0:T}NAME)))^(-0.6) .EQN 4 0 990 0 0 {4:R}NAME({0:T}NAME):{0:Q}NAME({0:T}NAME)+1.0 .EQN 4 0 433 0 0 {0:S}NAME({0:T}NAME):(((({0:\DT'}NAME({0:T}NAME)))^(-1)){73}(({0:T}NAME)/({0:T'}NAME)ò1.0)){71}((({0:C}NAME)[(6)*(({0:\DT'}NAME({0:T}NAME)))^(-0.6)){73}(({0:T}NAME)/({0:T'}NAME)<1.0)) .EQN 13 0 432 0 0 {0:\D\l}NAME({0:T}NAME,{0:\r}NAME):(({0:d}NAME)[(1)*((({0:T'}NAME)/({0:T}NAME)))^(10)+({0:d}NAME)[(2))*((({0:\r}NAME)/({0:\r'}NAME)))^(1.8)*({0:e}NAME)^((({0:C}NAME)[(1)*(1-((({0:\r}NAME)/({0:\r'}NAME)))^(2.8)))){54}({0:d}NAME)[(3)*{0:S}NAME({0:T}NAME)*( (({0:\r}NAME)/({0:\r'}NAME)))^({0:Q}NAME({0:T}NAME))*({0:e}NAME)^((({0:Q}NAME({0:T}NAME))/({4:R}NAME({0:T}NAME))*(1-((({0:\r}NAME)/({0:\r'}NAME)))^({4:R}NAME({0:T}NAME))))){54}({0:d}NAME)[(4)*({0:e}NAME)^((({0:C}NAME)[(2)*((({0:T}NAME)/({0:T'}NAME)))^( 1.5)+({0:C}NAME)[(3)*((({0:\r'}NAME)/({0:\r}NAME)))^(5))) .EQN 20 0 431 0 0 {0:k}NAME({0:T}NAME,{0:\r}NAME):{0:\l.o}NAME({0:T}NAME)+{0:\l'}NAME({0:\r}NAME)+{0:\D\l}NAME({0:T}NAME,{0:\r}NAME) .TXT 2 -3 457 0 0 C x1,1,0,0 .TXT 4 0 1221 0 0 Cg a78.000000,78.000000,58 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Dynamic Viscosity as a Function of Temperature and Density}} .TXT 3 0 1223 0 0 Cg a86.000000,86.000000,286 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20 \pard {\cf2 The dynamic viscosity of water, }{\cf2\f1 m}{\cf2 , may be correlated to its temperature and density. As the case of thermal conductivity, a correlation is used that was formulated under the auspices of the International Association for the Properties of Steam. This correlation in SI units (Pa-s) is:}} .EQN 10 1 475 0 0 {0:\m.o}NAME({0:T}NAME):(10)^(-6)*\(({0:T}NAME)/({0:T'}NAME))*((((0,3,{0:k}NAME,({0:c}NAME)[({0:k}NAME)*((({0:T'}NAME)/({0:T}NAME)))^({0:k}NAME)){64})))^(-1) .EQN 14 0 473 0 0 {0:\m}NAME({0:T}NAME,{0:\r}NAME):{0:\m.o}NAME({0:T}NAME)*({0:e}NAME)^(({0:\r}NAME)/({0:\r'}NAME)*((0,5,{0:i}NAME,((0,4,{0:j}NAME,({0:f}NAME)[({0:i}NAME,{0:j}NAME)*((({0:T'}NAME)/({0:T}NAME)-1))^({0:i}NAME)*((({0:\r}NAME)/({0:\r'}NAME)-1))^({0:j}NAME)) {64})){64}))*{0:Pa}NAME*{0:sec}NAME .TXT 4 -1 1264 0 0 Cg a78.000000,78.000000,60 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Kinematic Viscosity as a Function of Temperature and Density}} .TXT 3 0 1265 0 0 Cg a86.000000,86.000000,84 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20 \pard {\cf2 The dynamic viscosity of water, }{\cf2\f1 u}{\cf2 , is the ratio of viscosity to density and is thus:}} .EQN 4 1 1259 0 0 {0:\u}NAME({0:T}NAME,{0:\r}NAME):({0:\m}NAME({0:T}NAME,{0:\r}NAME))/({0:\r}NAME) .TXT 4 -1 1224 0 0 Cg a77.000000,77.000000,44 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Surface tension as a Function of Temperature}} .TXT 4 0 1225 0 0 Cg a87.000000,87.000000,317 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20 \pard {\cf2 The surface tension, }{\cf2\f1 s}{\cf2 , for the interface between the liquid phase and vapor phase of saturated water can be expressed as a function of the saturation temperature of the water. The equation for surface tension reported by Schmidt is used: (}{ \cf2\f1 s}{\cf2 has units of dyne/cm and temperature is the saturation temperature in K).}} .EQN 7 1 498 0 0 {0:\s}NAME({0:T}NAME):((({0:T'.x}NAME){72}(({0:T'}NAME)/({0:K}NAME))){71}(({0:T.x}NAME){72}(({0:T}NAME)/({0:K}NAME)))){71}(((({0:n}NAME)[(1)*(({0:T'.x}NAME-{0:T.x}NAME))^(2))/(1+{0:\b}NAME*({0:T'.x}NAME-{0:T.x}NAME))+((2,5,{0:i}NAME,({0:n}NAME)[( {0:i}NAME)*(({0:T'.x}NAME-{0:T.x}NAME))^({0:i}NAME)){64}))*({0:dyne}NAME)/({0:cm}NAME)) .TXT 19 -1 1277 0 0 C x1,1,0,0 .TXT 3 0 1368 0 0 Cg a87.000000,87.000000,31 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Single Phase Flow Lookup Curves}} .TXT 4 0 1369 0 0 Cg a87.000000,87.000000,200 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 In order to speed the calculation speed, the parameters for single phase flow were tabularized (from various text sources, as well as the relationships above, for temperatures ranging from 0 to 270 C.}} .TXT 6 0 1318 0 0 Cg a74.375000,74.375000,117 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128; \red128\green0\blue0;}{\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1 \fs20 \pard {\cf2 This MathCad worksheet makes extensive use of }{\cf3 \b\ul\link1 Cubic Splines}{\cf2 for curve fits. This is a built in function for MathCad.}} .ATT .ATT_END .ATT .LINK http://www.iea.com/~tyroneb/mathcad/SplineMethod.mcd .ATT_END .TXT 12 0 1320 0 0 Cg a82.875000,82.875000,26 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Extract Temperature Array.} .EQN 4 3 1321 0 0 {0:Table_T}NAME:(({0:WaterProperties}NAME){52}(0))*{0:K}NAME .TXT 4 -3 1322 0 0 Cg a84.000000,84.000000,76 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Extract Absolute Pressure of water and provide curve fitted function c_P(T).} .EQN 4 3 1323 0 0 {0:Table_P.w}NAME:({0:WaterProperties}NAME){52}(1)*{0:Pa}NAME .EQN 3 0 1324 0 0 {0:pws}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_P.w}NAME) .EQN 3 0 1325 0 0 {0:c_P}NAME({0:T}NAME):{0:interp}NAME({0:pws}NAME,{0:Table_T}NAME,{0:Table_P.w}NAME,{0:T}NAME) .TXT 3 -3 1330 0 0 Cg a84.000000,84.000000,91 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Extract saturated liquid enthalpy from the Steam Table and provide fitted function c_h{\dn f}(T).} .EQN 4 4 1331 0 0 {0:Table_h.f}NAME:({0:WaterProperties}NAME){52}(2)*({0:joule}NAME)/({0:kg}NAME) .EQN 4 0 1332 0 0 {0:hfs}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_h.f}NAME) .EQN 3 0 1333 0 0 {0:c_h.f}NAME({0:T}NAME):{0:interp}NAME({0:hfs}NAME,{0:Table_T}NAME,{0:Table_h.f}NAME,{0:T}NAME) .TXT 4 -4 1334 0 0 Cg a83.625000,83.625000,60 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Extract Specific Volume and provide fitted function c_v{\dn f}(T).} .EQN 5 4 1335 0 0 {0:Table_v.f}NAME:({0:WaterProperties}NAME){52}(3)*(({0:m}NAME)^(3))/({0:kg}NAME) .EQN 4 0 1336 0 0 {0:vfs}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_v.f}NAME) .EQN 3 0 1337 0 0 {0:c_v.f}NAME({0:T}NAME):{0:interp}NAME({0:vfs}NAME,{0:Table_T}NAME,{0:Table_v.f}NAME,{0:T}NAME) .TXT 4 -4 1338 0 0 Cg a86.000000,86.000000,60 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20 \pard Extract Density ({\f1 r}) and provide as a fitted function c_{\f1 r}(T). } .EQN 4 4 1339 0 0 {0:Table_\r}NAME:({0:WaterProperties}NAME){52}(4)*({0:kg}NAME)/(({0:m}NAME)^(3)) .EQN 5 0 1340 0 0 {0:\rs}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_\r}NAME) .EQN 4 0 1341 0 0 {0:c_\r}NAME({0:T}NAME):{0:interp}NAME({0:\rs}NAME,{0:Table_T}NAME,{0:Table_\r}NAME,{0:T}NAME) .TXT 1 -4 1342 0 0 C x1,1,0,0 .TXT 3 0 1343 0 0 Cg a86.000000,86.000000,70 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20 \pard Extract dynamic viscosity ({\f1 m}) and provide as a fitted function c_{\f1 m}(T).} .EQN 4 5 1344 0 0 {0:Table_\m}NAME:({0:WaterProperties}NAME){52}(5)*({0:newton}NAME*{0:sec}NAME)/(({0:m}NAME)^(2)) .EQN 6 0 1345 0 0 {0:\ms}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_\m}NAME) .EQN 4 0 1346 0 0 {0:c_\m}NAME({0:T}NAME):{0:interp}NAME({0:\ms}NAME,{0:Table_T}NAME,{0:Table_\m}NAME,{0:T}NAME) .TXT 4 -5 1347 0 0 Cg a86.000000,86.000000,72 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20 \pard Extract kinematic viscosity ({\f1 u}) and provide as a fitted function c_{\f1 u}(T).} .EQN 4 5 1348 0 0 {0:Table_\u}NAME:({0:WaterProperties}NAME){52}(6)*(({0:m}NAME)^(2))/({0:sec}NAME) .EQN 4 0 1373 0 0 {0:\us}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_\u}NAME) .EQN 4 0 1374 0 0 {0:c_\u}NAME({0:T}NAME):{0:interp}NAME({0:\us}NAME,{0:Table_T}NAME,{0:Table_\u}NAME,{0:T}NAME) .TXT 5 -5 1381 0 0 Cg a86.000000,86.000000,69 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20 \pard Extract surface tension ({\f1 s}) and provided as a fitted function c_{\f1 s}(T).} .EQN 4 5 1382 0 0 {0:Table_\s}NAME:({0:WaterProperties}NAME){52}(7)*({0:newton}NAME)/({0:m}NAME) .EQN 5 0 1383 0 0 {0:\ss}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_\s}NAME) .EQN 4 0 1384 0 0 {0:c_\s}NAME({0:T}NAME):{0:interp}NAME({0:\ss}NAME,{0:Table_T}NAME,{0:Table_\s}NAME,{0:T}NAME) .TXT 3 -5 1385 0 0 Cg a78.000000,78.000000,74 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red128\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Extract thermal conductivity (k) and provide as a fitted function c_k}{ \cf2\dn w}{\cf2 (T).}} .EQN 4 5 1386 0 0 {0:Table_k}NAME:({0:WaterProperties}NAME){52}(8)*({0:kg}NAME*{0:m}NAME)/(({0:sec}NAME)^(3)*{0:K}NAME) .EQN 5 0 1387 0 0 {0:kws}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_k}NAME) .EQN 4 0 1388 0 0 {0:c_k.w}NAME({0:T}NAME):{0:interp}NAME({0:kws}NAME,{0:Table_T}NAME,{0:Table_k}NAME,{0:T}NAME) .TXT 5 -5 1389 0 0 Cg a86.000000,86.000000,68 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Extract specific heat (c{ \dn p}) and provide as a fitted function c_c{\dn p}(T).} .EQN 4 5 1390 0 0 {0:Table_c.p}NAME:({0:WaterProperties}NAME){52}(9)*({0:joule}NAME)/({0:kg}NAME*{0:K}NAME) .EQN 5 0 1391 0 0 {0:cpws}NAME:{0:cspline}NAME({0:Table_T}NAME,{0:Table_c.p}NAME) .EQN 3 0 1392 0 0 {0:c_c.p}NAME({0:T}NAME):{0:interp}NAME({0:cpws}NAME,{0:Table_T}NAME,{0:Table_c.p}NAME,{0:T}NAME) .TXT 3 -5 1367 0 0 C x1,1,0,0 .TXT 4 1 1393 0 0 Cg a86.000000,86.000000,38 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Provided Functions to other worksheets}} .EQN 3 3 1429 0 0 {0:press}NAME:2565*{0:psi}NAME .EQN 3 0 1448 0 0 {0:P.sat}NAME({0:Ts}NAME):{0:root}NAME(({0:T}NAME({0:press}NAME,{0:h.f}NAME({0:press}NAME))-{0:Ts}NAME),{0:press}NAME) .EQN 5 0 1447 0 0 {0:fP}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_P}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:P.sat}NAME({0:Ts}NAME))))) .EQN 7 0 1461 0 0 {0:fh.f}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_h.f}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:h.f}NAME({0:fP}NAME({0:Ts}NAME)))))) .EQN 7 0 1464 0 0 {0:fv.f}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_v.f}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:v}NAME({0:fP}NAME({0:Ts}NAME),{0:h.f}NAME({0:fP}NAME({0:Ts}NAME))))))) .EQN 7 0 1467 0 0 {0:f\r}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_\r}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}(({0:v}NAME({0:fP}NAME({0:Ts}NAME),{0:h.f}NAME({0:fP}NAME({0:Ts}NAME))))^(-1))))) .EQN 7 0 1470 0 0 {0:f\m}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_\m}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:\m}NAME({0:Ts}NAME,{0:f\r}NAME({0:Ts}NAME)))))) .EQN 6 0 1474 0 0 {0:f\u}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_\u}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:\u}NAME({0:Ts}NAME,{0:f\r}NAME({0:Ts}NAME)))))) .EQN 6 0 1479 0 0 {0:fk.w}NAME({0:Ts}NAME):(((({0:var}NAME){72}({0:c_k.w}NAME({0:Ts}NAME)))){73}({0:Ts}NAME<543.15*{0:K}NAME)){71}({78}((({0:var}NAME){72}({0:k}NAME({0:Ts}NAME,{0:f\r}NAME({0:Ts}NAME)))))) .EQN 8 0 1484 0 0 {0:fc.p}NAME({0:Ts}NAME):{0:c_c.p}NAME({0:Ts}NAME) .TXT 4 -4 1638 0 0 C x1,1,0,0 .TXT 3 2 1837 0 0 Cg a82.000000,82.000000,39 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Special Functions for Solving backwards} .TXT 4 0 1639 0 0 Cg a74.625000,74.625000,481 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Enthalpy of Steam\par \par For superheated conditions exist functions can be provided for find enthalpy based on temperature and pressure. An iterative solution can be made of the value, but is not included here but should be used with care as it does not always provide good closure (i.e., not robust enough). This function ({\i h}{\i\dn sup}) iteratively solves for enthalpy when superheated condition exist, but uses the saturated steam function when pressure is less than the saturation pressure.} .EQN 16 1 1823 0 0 {0:h}NAME:1250*({0:BTU}NAME)/({0:lb}NAME) .TXT 1 32 1824 0 0 Cg a69.000000,69.000000,61 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard ; Initial seed of iterative solution for superheated enthalpy} .EQN 3 -32 1825 0 0 {0:Given}NAME .EQN 3 3 1826 0 0 {0:T.t}NAME÷{0:T}NAME({0:p}NAME,{0:h}NAME) .TXT 0 29 1827 0 0 Cg a54.000000,54.000000,45 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard ; iterative solution for superheated enthalpy} .EQN 4 -32 1828 0 0 {0:h.spr}NAME({0:p}NAME,{0:T.t}NAME):{0:find}NAME({0:h}NAME) .EQN 5 0 1829 0 0 {0:h.sup}NAME({0:p}NAME,{0:T}NAME):(({0:h.g}NAME({0:p}NAME)){73}({0:fP}NAME({0:T}NAME)ó{0:p}NAME)){71}({78}(({0:h.spr}NAME({0:p}NAME,{0:T}NAME)))) .TXT 0 32 1830 0 0 Cg a49.000000,49.000000,146 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard ; function to provide enthalpy given pressure and temperature. Note that it checks for superheated condition before using the iterative solution.} .TXT 11 -33 1831 0 0 Cg a54.000000,54.000000,61 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Function for finding Temperature of feedwater given enthalpy.} .EQN 3 1 1832 0 0 {0:BCT}NAME:650*{0:K}NAME .EQN 3 0 1833 0 0 {0:Given}NAME .EQN 4 2 1834 0 0 {0:Gh.fw}NAME÷{0:fh.f}NAME({0:BCT}NAME) .EQN 4 -2 1835 0 0 {0:fT.sat}NAME({0:Gh.fw}NAME):{0:find}NAME({0:BCT}NAME) .TXT 29 -3 1249 0 0 C x1,1,0,0 .EQN 3 0 1136 0 0 {0:p.crit}NAME~3208.2*{0:psi}NAME .TXT 5 0 1137 0 0 Cg a73.000000,73.000000,77 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants For Saturated Liquid and Vapor Enthalpies as a Function of Pressure} } .EQN 19 1 1138 0 0 {0:CF1}NAME~({9,1}ö.3325699282*(10)^(-4)ö-.4334859620*(10)^(-3)ö.1753652324*(10)^(-2)ö.2878007027*(10)^(-2)ö-.5245502284*(10)^(-2)ö.1840599513*(10)^(0)ö.2318240735*(10)^(1)ö.337529994*(10)^(2)ö.6970887859*(10)^(2)) .EQN 0 25 1139 0 0 {0:CF2}NAME~({9,1}ö.1265125057*(10)^(1)ö-.4730726377*(10)^(2)ö.6697399434*(10)^(3)ö-.3898988188*(10)^(4)ö-.4350217298*(10)^(3)ö.1130306339*(10)^(6)ö-.4634506669*(10)^(6)ö.3637413208*(10)^(6)ö.8408618802*(10)^(6)) .EQN 0 24 1140 0 0 {0:CF3}NAME~({9,1}ö.1003003098*(10)^(-5)ö-.6454771710*(10)^(-4)ö.1694019149*(10)^(-2)ö-.2319717696*(10)^(-1)ö.1743091663*(10)^(0)ö-.6973992961*(10)^(0)ö.1522233257*(10)^(1)ö-.1426813520*(10)^(2)ö.9060030436*(10)^(3)) .EQN 37 -49 1141 0 0 {0:CG1}NAME~({12,1}ö-.2062390734*(10)^(-6)ö.3004773304*(10)^(-5)ö-.1237675562*(10)^(-4)ö.000000000*(10)^(0)ö.000000000*(10)^(0)ö.000000000*(10)^(0)ö.000000000*(10)^(0)ö-.1501147505*(10)^(-2)ö.1617232913*(10)^(-1)ö.8018288621*(10)^(0)ö.1436943768*(10)^(2)ö .1105836875*(10)^(4)) .EQN 0 25 1142 0 0 {0:CG2}NAME~({9,1}ö-.4864322134*(10)^(0)ö.1690507762*(10)^(2)ö-.2143423131*(10)^(3)ö.1036033878*(10)^(4)ö-.2765701318*(10)^(1)ö.1859988044*(10)^(2)ö-.1978847871*(10)^(6)ö.1231247634*(10)^(7)ö-.2234264997*(10)^(7)) .EQN 0 24 1143 0 0 {0:CG3}NAME~({7,1}ö.5006336938*(10)^(-4)ö-.2725378570*(10)^(-2)ö.5918579484*(10)^(-1)ö-.6406390628*(10)^(0)ö.3434189609*(10)^(1)ö.5561957539*(10)^(1)ö.9059978254*(10)^(3)) .TXT 24 -50 1151 0 0 C x1,1,0,0 .TXT 4 0 1152 0 0 Cg a72.000000,72.000000,64 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants for Temperature as a Function of Pressure and Enthalpy}} .EQN 9 -1 1153 0 0 {0:CT1}NAME~({2,4}ö-.1180204381*(10)^(-9)ö-.4682674330*(10)^(-6)ö.1618595991*(10)^(-6)ö.1857226027*(10)^(-3)ö-.5595281760*(10)^(-4)ö.9763617000*(10)^(0)ö.3360880214*(10)^(-2)ö.3276275552*(10)^(2)) .EQN 12 0 1154 0 0 {0:CT2}NAME~({5,5}ö-.3756804091*(10)^(-23)ö.5825511142*(10)^(-19)ö-.2732087163*(10)^(-15)ö.3309704045*(10)^(-12)ö-.9844700000*(10)^(-17)ö.1678398723*(10)^(-20)ö.4559400289*(10)^(-17)ö-.4260074181*(10)^(-12)ö.3037825558*(10)^(-8)ö-.6269403683*(10)^(-5)ö .4457387575*(10)^(-17)ö-.1164901355*(10)^(-12)ö.116801172*(10)^(-8)ö-.5198380474*(10)^(-5)ö.873231868*(10)^(-2)ö-.3649500626*(10)^(-14)ö.8018858166*(10)^(-10)ö-.6839200986*(10)^(-6)ö.2673303442*(10)^(-2)ö-.3055217235*(10)^(1)ö07104327342*(10)^(-12)ö- .1473977290*(10)^(-7)ö.1174524584*(10)^(-3)ö-.4302857237*(10)^(0)ö.6390801208*(10)^(3)) .EQN 17 0 1155 0 0 {0:CT3}NAME~({5,5}ö-.8315044742*(10)^(-21)ö.733836751*(10)^(-17)ö-.2275585718*(10)^(-13)ö.2463258371*(10)^(-10)ö-.2092033147*(10)^(-8)ö.4703914404*(10)^(-17)ö-.4249155515*(10)^(-13)ö.1342639113*(10)^(-9)ö-.1477890326*(10)^(-6)ö.1218742752*(10)^(-4)ö- .1001409043*(10)^(-13)ö.9246248312*(10)^(-10)ö-.2972436458*(10)^(-6)ö.3326901268*(10)^(-3)ö-.2678181564*(10)^(-1)ö.9527692453*(10)^(-11)ö-.8970959364*(10)^(-7)ö.2928177730*(10)^(-3)ö-.3333448850*(10)^(0)ö.2829274345*(10)^(2)ö-.3425564927*(10)^(-8)ö .3278071846*(10)^(-4)ö-.1083713369*(10)^(0)ö.1256160907*(10)^(3)ö-.1179100862*(10)^(5)) .EQN 17 0 1156 0 0 {0:CT4}NAME~({5,5}ö-.6842306083*(10)^(-23)ö.6946004624*(10)^(-19)ö.3720795449*(10)^(-16)ö-1608693653*(10)^(-11)ö.4798207438*(10)^(-10)ö.3473711350*(10)^(-19)ö-.3668096142*(10)^(-15)ö.5731099333*(10)^(-14)ö.7505679464*(10)^(-8)ö.5953599813*(10)^(-8)ö- .6365519546*(10)^(-16)ö.6823225984*(10)^(-12)ö-.1030201866*(10)^(-9)ö-.1404664699*(10)^(-4)ö.2867228326*(10)^(-2)ö.8006731336*(10)^(-13)ö-.5356866315*(10)^(-9)ö.7010900113*(10)^(-9)ö.1222747819*(10)^(-1)ö-.6347031007*(10)^(1)ö-.1437179752*(10)^(-10)ö .1527377542*(10)^(-6)ö.3410500159*(10)^(-4)ö-.3910086240*(10)^(1)ö.3795256953*(10)^(4)) .TXT 11 1 1157 0 0 C x1,1,0,0 .TXT 3 0 1158 0 0 Cg a78.000000,78.000000,67 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants for Specific Volue as a Function of Pressure and Enthalpy}} .EQN 10 0 1159 0 0 {0:CN1}NAME~({3,5}ö.7407124321*(10)^(-19)ö-.1760288590*(10)^(-14)ö.8017924673*(10)^(-11)ö-.3603625114*(10)^(-16)ö.1916720525*(10)^(-11)ö-.9160120130*(10)^(-8)ö-.2082170753*(10)^(-13)ö-.6988467605*(10)^(-9)ö.430826942*(10)^(-5)ö.1440785930*(10)^(-10)ö .7744787633*(10)^(-7)ö-.3811294543*(10)^(-3)ö-.1820625039*(10)^(-8)ö-.4816067020*(10)^(-5)ö-.411796170*(10)^(1)) .EQN 12 0 1160 0 0 {0:CN2}NAME~({4,3}ö.3629590764*(10)^(-14)ö-.2713755001*(10)^(-10)ö.1855203702*(10)^(-6)ö-.2097279215*(10)^(-3)ö-.1053834646*(10)^(-10)ö.8437637660*(10)^(-7)ö-.5394444747*(10)^(-3)ö.1802594763*(10)^(1)ö.7823817858*(10)^(-8)ö-.6449501159*(10)^(-4)ö .3817195017*(10)^(0)ö-.1403086128*(10)^(4)) .TXT 11 0 1178 0 0 Cg a78.000000,78.000000,74 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants forThermal Conductivity as a Funciton of Temperature and Density}} .EQN 7 0 1161 0 0 {0:T'}NAME~647.27*{0:K}NAME .EQN 1 32 1182 0 0 ({0:d}NAME)[(1)~7.01309*(10)^(-2)*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 0 20 1183 0 0 ({0:C}NAME)[(1)~6.42857*(10)^(-1) .EQN 3 -52 1164 0 0 {0:\r'}NAME~317.763*({0:kg}NAME)/(({0:m}NAME)^(3)) .EQN 1 52 1184 0 0 ({0:C}NAME)[(2)~-4.11717*(10)^(0) .EQN 1 -20 1185 0 0 ({0:d}NAME)[(2)~1.18520*(10)^(-2)*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 3 20 1186 0 0 ({0:C}NAME)[(3)~-6.17937*(10)^(0) .EQN 2 -20 1187 0 0 ({0:d}NAME)[(3)~1.69937*(10)^(-3)*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 2 20 1188 0 0 ({0:C}NAME)[(4)~3.08976*(10)^(-3) .EQN 2 -52 1172 0 0 {0:a}NAME~({4,1}ö-4.22464*(10)^(-3)ö1.56146*(10)^(-2)ö2.99621*(10)^(-2)ö1.02811*(10)^(-2))*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 1 32 1189 0 0 ({0:d}NAME)[(4)~-1.02000*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 1 20 1190 0 0 ({0:C}NAME)[(5)~8.22994*(10)^(-2) .EQN 4 0 1191 0 0 ({0:C}NAME)[(6)~1.00932*(10)^(1) .EQN 8 -52 1179 0 0 {0:b}NAME~({3,1}ö1.06000*(10)^(0)ö4.00302*(10)^(-1)ö-3.97070*(10)^(-1))*({0:watt}NAME)/({0:K}NAME*{0:m}NAME) .EQN 10 0 1180 0 0 ({0:B}NAME)[(1)~-1.71587*(10)^(-1) .EQN 5 0 1181 0 0 ({0:B}NAME)[(2)~2.39219 .TXT 4 0 1192 0 0 C x1,1,0,0 .TXT 3 0 1193 0 0 Cg a77.000000,77.000000,72 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants for Dynamic Viscosity as a Function of Temperature and Density}} .EQN 7 1 1194 0 0 {0:c}NAME~({4,1}ö-0.0036744ö0.0105287ö0.0177624ö0.0181583) .EQN 14 0 1195 0 0 {0:f}NAME~({6,5}ö-0.02026ö0.060225ö-0.08229ö-0.026776ö-0.025309ö-0.027045ö-0.032932ö0.100754ö0.213486ö0.347247ö0.263129ö0.145831ö0.195286ö-0.497089ö-0.687343ö-0.959456ö-0.743539ö-0.274637ö-0.084337ö0.067067ö1.207552ö0.673665ö0.789393ö0.235622ö0.146543ö- 0.551119ö0.907919ö-0.130356ö0.162888ö0.501938) .TXT 12 -1 1202 0 0 Cg a78.000000,78.000000,58 {\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green128\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2 Constants for surface tension as a Function of Temperature}} .EQN 3 1 1207 0 0 {0:\b}NAME~0.83 .EQN 12 0 1205 0 0 {0:n}NAME~({6,1}ö-1.149719290*(10)^(-11)ö1.286274650*(10)^(-8)ö-5.752805180*(10)^(-6)ö1.121404688*(10)^(-3)ö1.160936807*(10)^(-1)ö0) .TXT 14 -1 1838 0 0 C x1,1,0,0 .EQN 95 1 1843 0 0 {0:WaterProperties}NAME~({55,10}ö4.389*(10)^(3)ö4.375*(10)^(3)ö4.364*(10)^(3)ö4.354*(10)^(3)ö4.344*(10)^(3)ö4.334*(10)^(3)ö4.323*(10)^(3)ö4.314*(10)^(3)ö4.306*(10)^(3)ö4.298*(10)^(3)ö4.29*(10)^(3)ö4.283*(10)^(3)ö4.276*(10)^(3)ö4.269*(10)^(3)ö4.263*(10)^(3 )ö4.257*(10)^(3)ö4.251*(10)^(3)ö4.245*(10)^(3)ö4.24*(10)^(3)ö4.235*(10)^(3)ö4.23*(10)^(3)ö4.225*(10)^(3)ö4.222*(10)^(3)ö4.218*(10)^(3)ö4.215*(10)^(3)ö4.211*(10)^(3)ö4.208*(10)^(3)ö4.205*(10)^(3)ö4.202*(10)^(3)ö4.201*(10)^(3)ö4.197*(10)^(3)ö4.192*(10)^(3)ö 4.193*(10)^(3)ö4.208*(10)^(3)ö4.216*(10)^(3)ö4.21*(10)^(3)ö4.205*(10)^(3)ö4.2*(10)^(3)ö4.196*(10)^(3)ö4.193*(10)^(3)ö4.19*(10)^(3)ö4.187*(10)^(3)ö4.184*(10)^(3)ö4.182*(10)^(3)ö4.181*(10)^(3)ö4.18*(10)^(3)ö4.179*(10)^(3)ö4.178*(10)^(3)ö4.179*(10)^(3)ö4.18* (10)^(3)ö4.182*(10)^(3)ö4.186*(10)^(3)ö4.192*(10)^(3)ö4.202*(10)^(3)ö4.218*(10)^(3)ö0.596ö0.603ö0.609ö0.615ö0.621ö0.626ö0.631ö0.636ö0.641ö0.645ö0.649ö0.652ö0.656ö0.659ö0.662ö0.664ö0.667ö0.669ö0.671ö0.673ö0.675ö0.676ö0.678ö0.679ö0.68ö0.681ö0.681ö0.682ö 0.682ö0.682ö0.682ö0.681ö0.68ö0.679ö0.681ö0.679ö0.677ö0.674ö0.67ö0.666ö0.662ö0.657ö0.651ö0.646ö0.641ö0.635ö0.627ö0.62ö0.614ö0.606ö0.598ö0.589ö0.58ö0.571ö0.561ö0.021ö0.023ö0.024ö0.025ö0.026ö0.027ö0.029ö0.03ö0.031ö0.032ö0.033ö0.034ö0.036ö0.037ö0.038ö0.039ö 0.04ö0.041ö0.042ö0.043ö0.044ö0.046ö0.047ö0.048ö0.049ö0.05ö0.051ö0.052ö0.053ö0.054ö0.055ö0.056ö0.057ö0.058ö8.654ö9.131ö9.645ö10.23ö10.9ö11.63ö12.41ö13.31ö14.32ö15.47ö16.74ö18.2ö19.91ö21.97ö24.4ö27.27ö30.75ö34.92ö39.91ö46.3ö54.67ö1.271*(10)^(-7)ö1.285*(10)^ (-7)ö1.298*(10)^(-7)ö1.313*(10)^(-7)ö1.328*(10)^(-7)ö1.344*(10)^(-7)ö1.361*(10)^(-7)ö1.379*(10)^(-7)ö1.398*(10)^(-7)ö1.418*(10)^(-7)ö1.44*(10)^(-7)ö1.463*(10)^(-7)ö1.488*(10)^(-7)ö1.514*(10)^(-7)ö1.542*(10)^(-7)ö1.573*(10)^(-7)ö1.605*(10)^(-7)ö1.64*(10)^( -7)ö1.678*(10)^(-7)ö1.719*(10)^(-7)ö1.763*(10)^(-7)ö1.81*(10)^(-7)ö1.861*(10)^(-7)ö1.916*(10)^(-7)ö1.976*(10)^(-7)ö2.041*(10)^(-7)ö2.112*(10)^(-7)ö2.188*(10)^(-7)ö2.27*(10)^(-7)ö2.36*(10)^(-7)ö2.458*(10)^(-7)ö2.565*(10)^(-7)ö2.681*(10)^(-7)ö2.808*(10)^(-7 )ö2.964*(10)^(-7)ö3.113*(10)^(-7)ö3.284*(10)^(-7)ö3.465*(10)^(-7)ö3.677*(10)^(-7)ö3.916*(10)^(-7)ö4.165*(10)^(-7)ö4.456*(10)^(-7)ö4.775*(10)^(-7)ö5.14*(10)^(-7)ö5.559*(10)^(-7)ö6.024*(10)^(-7)ö6.581*(10)^(-7)ö7.252*(10)^(-7)ö8.038*(10)^(-7)ö8.973*(10)^(-7 )ö1.011*(10)^(-6)ö1.147*(10)^(-6)ö1.31*(10)^(-6)ö1.519*(10)^(-6)ö1.794*(10)^(-6)ö9.798*(10)^(-5)ö1.001*(10)^(-4)ö1.022*(10)^(-4)ö1.043*(10)^(-4)ö1.065*(10)^(-4)ö1.087*(10)^(-4)ö1.11*(10)^(-4)ö1.134*(10)^(-4)ö1.158*(10)^(-4)ö1.184*(10)^(-4)ö1.211*(10)^(-4) ö1.239*(10)^(-4)ö1.268*(10)^(-4)ö1.299*(10)^(-4)ö1.332*(10)^(-4)ö1.366*(10)^(-4)ö1.403*(10)^(-4)ö1.442*(10)^(-4)ö1.484*(10)^(-4)ö1.529*(10)^(-4)ö1.576*(10)^(-4)ö1.628*(10)^(-4)ö1.683*(10)^(-4)ö1.742*(10)^(-4)ö1.806*(10)^(-4)ö1.875*(10)^(-4)ö1.95*(10)^(-4) ö2.031*(10)^(-4)ö2.118*(10)^(-4)ö2.212*(10)^(-4)ö2.315*(10)^(-4)ö2.427*(10)^(-4)ö2.548*(10)^(-4)ö2.681*(10)^(-4)ö2.839*(10)^(-4)ö2.996*(10)^(-4)ö3.164*(10)^(-4)ö3.357*(10)^(-4)ö3.577*(10)^(-4)ö3.815*(10)^(-4)ö4.073*(10)^(-4)ö4.367*(10)^(-4)ö4.697*(10)^(-4 )ö5.074*(10)^(-4)ö5.492*(10)^(-4)ö5.971*(10)^(-4)ö6.534*(10)^(-4)ö7.209*(10)^(-4)ö8.006*(10)^(-4)ö8.947*(10)^(-4)ö1.009*(10)^(-3)ö1.146*(10)^(-3)ö1.31*(10)^(-3)ö1.519*(10)^(-3)ö1.794*(10)^(-3)ö770.6ö778.9ö786.9ö794.5ö801.8ö808.9ö815.7ö822.2ö828.6ö834.8ö 840.8ö846.6ö852.3ö857.9ö863.3ö868.7ö874ö879.2ö884.3ö889.4ö894.4ö899.4ö904.3ö909.2ö914ö918.8ö923.5ö928.1ö932.8ö937.3ö941.8ö946.2ö950.5ö954.7ö958.4ö961.8ö965.4ö968.7ö971.8ö974.9ö977.8ö980.6ö983.2ö985.7ö988ö990.2ö992.3ö994.1ö995.6ö997.1ö998.2ö999.2ö999.7ö(10 )^(3)ö999.9ö1.298*(10)^(-3)ö1.284*(10)^(-3)ö1.271*(10)^(-3)ö1.259*(10)^(-3)ö1.247*(10)^(-3)ö1.236*(10)^(-3)ö1.226*(10)^(-3)ö1.216*(10)^(-3)ö1.207*(10)^(-3)ö1.198*(10)^(-3)ö1.189*(10)^(-3)ö1.181*(10)^(-3)ö1.173*(10)^(-3)ö1.166*(10)^(-3)ö1.158*(10)^(-3)ö 1.151*(10)^(-3)ö1.144*(10)^(-3)ö1.137*(10)^(-3)ö1.131*(10)^(-3)ö1.124*(10)^(-3)ö1.118*(10)^(-3)ö1.112*(10)^(-3)ö1.106*(10)^(-3)ö1.1*(10)^(-3)ö1.094*(10)^(-3)ö1.088*(10)^(-3)ö1.083*(10)^(-3)ö1.077*(10)^(-3)ö1.072*(10)^(-3)ö1.067*(10)^(-3)ö1.062*(10)^(-3)ö 1.057*(10)^(-3)ö1.052*(10)^(-3)ö1.047*(10)^(-3)ö1.044*(10)^(-3)ö1.04*(10)^(-3)ö1.036*(10)^(-3)ö1.033*(10)^(-3)ö1.029*(10)^(-3)ö1.026*(10)^(-3)ö1.023*(10)^(-3)ö1.02*(10)^(-3)ö1.017*(10)^(-3)ö1.015*(10)^(-3)ö1.012*(10)^(-3)ö1.01*(10)^(-3)ö1.008*(10)^(-3)ö 1.006*(10)^(-3)ö1.004*(10)^(-3)ö1.003*(10)^(-3)ö1.002*(10)^(-3)ö1.001*(10)^(-3)ö(10)^(-3)ö(10)^(-3)ö(10)^(-3)ö1.187*(10)^(6)ö1.161*(10)^(6)ö1.136*(10)^(6)ö1.111*(10)^(6)ö1.087*(10)^(6)ö1.062*(10)^(6)ö1.038*(10)^(6)ö1.014*(10)^(6)ö9.906*(10)^(5)ö9.671*(10) ^(5)ö9.437*(10)^(5)ö9.205*(10)^(5)ö8.975*(10)^(5)ö8.746*(10)^(5)ö8.519*(10)^(5)ö8.293*(10)^(5)ö8.069*(10)^(5)ö7.846*(10)^(5)ö7.624*(10)^(5)ö7.403*(10)^(5)ö7.184*(10)^(5)ö6.965*(10)^(5)ö6.747*(10)^(5)ö6.531*(10)^(5)ö6.315*(10)^(5)ö6.1*(10)^(5)ö5.886*(10)^( 5)ö5.672*(10)^(5)ö5.459*(10)^(5)ö5.247*(10)^(5)ö5.035*(10)^(5)ö4.824*(10)^(5)ö4.613*(10)^(5)ö4.402*(10)^(5)ö4.191*(10)^(5)ö3.98*(10)^(5)ö3.769*(10)^(5)ö3.559*(10)^(5)ö3.349*(10)^(5)ö3.139*(10)^(5)ö2.93*(10)^(5)ö2.72*(10)^(5)ö2.511*(10)^(5)ö2.302*(10)^(5)ö 2.093*(10)^(5)ö1.884*(10)^(5)ö1.675*(10)^(5)ö1.466*(10)^(5)ö1.257*(10)^(5)ö1.048*(10)^(5)ö8.386*(10)^(4)ö6.294*(10)^(4)ö4.199*(10)^(4)ö2.101*(10)^(4)ö-41.64ö5.429*(10)^(6)ö5.014*(10)^(6)ö4.624*(10)^(6)ö4.258*(10)^(6)ö3.914*(10)^(6)ö3.591*(10)^(6)ö3.29*(10 )^(6)ö3.008*(10)^(6)ö2.745*(10)^(6)ö2.5*(10)^(6)ö2.272*(10)^(6)ö2.061*(10)^(6)ö1.865*(10)^(6)ö1.684*(10)^(6)ö1.518*(10)^(6)ö1.364*(10)^(6)ö1.223*(10)^(6)ö1.094*(10)^(6)ö9.761*(10)^(5)ö8.685*(10)^(5)ö7.705*(10)^(5)ö6.816*(10)^(5)ö6.012*(10)^(5)ö5.285*(10)^ (5)ö4.632*(10)^(5)ö4.045*(10)^(5)ö3.519*(10)^(5)ö3.051*(10)^(5)ö2.634*(10)^(5)ö2.265*(10)^(5)ö1.94*(10)^(5)ö1.653*(10)^(5)ö1.403*(10)^(5)ö1.184*(10)^(5)ö1.013*(10)^(5)ö8.453*(10)^(4)ö7.011*(10)^(4)ö5.78*(10)^(4)ö4.736*(10)^(4)ö3.855*(10)^(4)ö3.116*(10)^(4 )ö2.501*(10)^(4)ö1.992*(10)^(4)ö1.574*(10)^(4)ö1.234*(10)^(4)ö9.582*(10)^(3)ö7.375*(10)^(3)ö5.621*(10)^(3)ö4.241*(10)^(3)ö3.166*(10)^(3)ö2.337*(10)^(3)ö1.704*(10)^(3)ö1.227*(10)^(3)ö871.8ö610.8ö543.1ö538.1ö533.1ö528.1ö523.1ö518.1ö513.1ö508.1ö503.1ö498.1ö 493.1ö488.1ö483.1ö478.1ö473.1ö468.1ö463.1ö458.1ö453.1ö448.1ö443.1ö438.1ö433.1ö428.1ö423.1ö418.1ö413.1ö408.1ö403.1ö398.1ö393.1ö388.1ö383.1ö378.1ö373.1ö368.1ö363.1ö358.1ö353.1ö348.1ö343.1ö338.1ö333.1ö328.1ö323.1ö318.1ö313.1ö308.1ö303.1ö298.1ö293.1ö288.1ö 283.1ö278.1ö273.1)